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ABSTRACT 

A method is developed for calculating the growth of a turbulent 
boundary layer at hypersonic Mach numbers. Excellent agreement with 
experimental results from axisymmetric nozzles has been obtained by 
the application of this method. The method utilizes a modification of 
Stewart son' s transformation to simplify the integration of the momentum 
equation. Heat transfer is taken into account by evaluating the gas prop- 
ert ies at Eckert's reference temperature and by using a modification 
of Croccols quadratic for the temperature distribution in the boundary 
layer. A new empirical relation i s  used for the incompressible friction 
coefficient which agrees with experimental data over a Reynolds num- 
ber range from lo5 to lo9. 

NOMENCLATURE 

Flow area  

Speed of sound 

Local skin-friction coefficient 

Mean skin- friction coefficient 

Enthalpy 

Boundary layer form factor 

Mach number 

Parameter in power-law equations for skin friction 

Function defined in Eq. (4) 

Pressure  

Function defined in Eq. (4) 

Radius of curvature of nozzle at the throat 

Reynolds number based on x 

Incompressible Reynolds number based on X 

Reynolds number based on 8 

Local distance from axis of flow to wall 

Distance measured along wall surface 

Temperature 

Transformed velocity component parallel to wall 



Velocity component parallel to wall 

Transformed coordinate along axis of flow 

Coordinate along axis of flow 

Transformed coordinate normal to wall 

Coordinate normal to wall 

Function defined in Eq. (20) 

Function defined in Eq. (21) 

Ratio of specific heats 

Boundary-layer displacement thickness 

Boundary-layer thickness 

Boundary-layer momentum thickness 

Dynamic viscosity 

Density 

Shearing s t ress  at wall 

Angle of wall surface with respect to axis 

Subscripts 

Value at adiabatic wall conditions 

Value at free-stream static conditions 

Value for incompressible flow 

Value at free-stream stagnation conditions 

Local stagnation temperature 

Total 

Transformed 

Evaluated at the wall 

Superscripts 

* Evaluated at hl = 1 except 6* 
, 

Evaluated at reference temperature 



INTRODUCTION 

Many investigators have studied the problem of calculating the 
growth of turbulent boundary layers. For the incompressible adiabatic 
case, such calculations a re  fairly straightforward since they depend 
only upon the empirical relationship of the skin-friction coefficient with 
Reynolds number when the pressure gradients in the direction of flow 
are  favorable o r  absent (Ref. 1). Even in the presence of adverse 
pressure gradients, empirical methods have been devised for the 
purpose of predictin? the location of separation (Ref. 2). 

As the speed of the gas outside the boundary layer increases, the 
effects of compressibility on the skin-friction coefficient must also be 
taken into account. For many cases in supersonic flow, the heat 
transfer  between the gas and the wall may be neglected and methods 
such a s  Tucker's (Ref. 3 )  may be used to calculate the boundary-layer 
growth. There is enough difference, however, between the free- 
strea-m static temperature and the adiabatic wall temperature that some 
intermediate "reference" temperature must be used for evaluating the 
compressible skin-friction coefficient in order to obtain good 
correlation with experimental results. Tucker uses a reference 
temperature equal to the arithmetic average of the adiabatic wall 
temperature and the free-stream static temperature. 

For  gases with a Prandtl number of 1, the adiabatic wall tempera- 
ture i s  equal to the stagnation temperature and the thermal boundary 
layer has the same thickness a s  the velocity boundary layer. For 
gases such a s  air which have a Prandtl number less  than 1, the 
adiabatic wall temperature is less than the stagnation temperature 
and the thermal boundary layer is thicker than the velocity boundary 
layer. Bartz (Ref. 4) attempts to take this effect into account, 
together with the effect of heat transfer, by obtaining simultaneous 
solutions of the momentum equation and the energy equation. He, 
however, restr icts  his solution to a one-seventh-power velocity profile 
and uses a reference temperature equal to the arithmetic average of 
the wall temperature and free-stream static temperature. 

When the wall temperature is much lower than the adiabatic wall 
temperature (often the situation at hypersonic speeds), the reference 
temperature should be somewhat higher than the arithmetic mean 
between the wall and free-stream static temperature as  shown by 
Sornmer and Short (Ref. 5) and Tendeland (Ref. 6). The reference 
temperature suggested by Eckert (Ref. 7)  correlates with existing 
data a s  well a s  that used by Sommer and Short. Persh (Ref. 8) 
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attempts to account for this same effect by using a reference tempera- 
ture equal to the temperature at  the edge of the laminar sub-layer, 
where this temperature is defined as  a function of velocity ratio 
according to Crocco's quadratic modified by using the adiabatic wall 
temperature to account for the Prandtl number being less than one. 

One important use of an accurate method of calculating turbulent- 
boundary-layer growth at  hypersonic Mach numbers is in the design of 
axisymmetric hypersonic wind tunnels. The perfect-fluid (potential- 
flow) contour can be accurately calculated by the method of character- 
istics, but the attainment of uniform flow in the test region depends 
also upon the accuracy of the boundary-layer correction to the 
theoretical contour. Each of the available methods of calculating 
boundary-layer growth possessed some drawback. This fact led to the 
development of the method described herein, which utilizes a modifi- 
cation of Stewartson's transformation (Ref. 9) to aid in the integration 

' of the momentum equation. The main difference, however, between 
this method and other methods is in the evaluation of the compressible 
skin-friction coefficient and the transformed form factor. In order to 
simplify the calculations, a new empirical equation was developed for  
the incompressible skin-friction coefficient which agrees with experi- 
mental data over a range of Reynolds number ( o x i )  from l O V 0  10' . 
Excellent correlations have been obtained between experimental values 
of boundary-layer displacement thickness and those calculated by this 
met hod. 

Since this method was developed primarily for hypersonic wind 
tunnels, i t  may not be suitable where adverse pressure gradients a r e  
present o r  where the temperatures a re  sufficiently high to cause 
dissociation. 

DEVELOPMENTOFMETHOD 

MOMENTUM EQUATION 

For  the purpose of this report, steady compressible flow is 
assumed. Thus, the von Karman momentum equation for axisymmetric 
flow can be written in the form: 

d 8  2 - M 1 + H  - d M + L d r  - -  cf 
d s d s r d s ]  - 2  

In order to obtain a solution for the momentum thickness 8, the values 
of 1 1 , and Cr must be known as a function of distance s along the 
surface. For many cases, such a s  wind tunnel nozzles, these values 
a r e  known a s  a function of distance x along the center line. Since 



~ q .  (1) may be written a s  

When o is small,  the assumption that sec  o = 1 can be made with 
negligible consequences. 

It can be recognized that Eq. (3) is a linear, f i rs t-order ,  ordinary 
differential equation of the form 

which has the solution 

Since P(x)  and Q(X) a r e  generally non-analytic functions of x ,  numerical 
methods must be used to evaluate the indicated integrations. 

The solution of Eq. (3) is considerably simplified, however, 
through the use of the equations 

and 

which a r e  obtained f rom Stewartson's transformation a s  shown in  
Appendix A. By substituting Eq. ( 6 )  and (7) into Eq. (3), the equation 



is obtained. By multiplying Eq. (8) by r M + , the left-hand side 
becomes a perfect differential i f  Htr is assumed to be constant over 
the interval of integration. Therefore, 

Thus, the solution of the momentum equation is reduced to a single 
integration which, in general, must be accomplished by numerical 
methods. 

Substitution of Eq. (6) into Eq. (9) yields 
/ 

It may be noted that, a s  long as  Ilt, a s  defined by Eq. (7 )  is approxi- 
mately constant, Eq. (6)  and (7) may be considered to be merely 
integrating aids irrespective of the validity of Stewartson's transfor- 
mation. 

When there is no heat transfer and the Prandtl number is one, the 
transformed form factor becomes equal to the incompressible value. 
In an attempt to account for heat transfer and for Prandtl numbers other 
than one, use is made of Crocco's quadratic for the temperature 
distribution in the boundary layer according to the equation 

which is the form used by Persh (Ref. 8). As shown in Appendix A, the 
use of this equation yields 

Combining Eqs. (7) and (1 2) gives 

T  Taw 
1 = I + - -  I 

To To 

which relates the transformed form factor in terms of the incompressible 
value and the temperature ratios. 



For  the evaluation of Eq. (1 ) for a particular problem, values of 
r, XI, a, and y a r e  given a s  functions of x .  With the wall temperature 
given o r  assumed a s  a function of x,  Ht, may be found by Eq. (13) in 
t e rms  of Hi .  Still remaining to be determined a r e  C f  and Hi, which a r e  
considered in subsequent sections. 

DETERMINATION OF Cf  

The compressible skin-friction coefficient Cf  in Eq. (10) is a 
function of Mach number, Reynolds number, and heat t ransfer  and is 
defined in t e rms  of the shearing s t r e s s  at the wall, 

Ln the evaluation of C f ,  efforts a r e  made to obtain empirical correlations 
with the incompressible value which is a function of Reynolds number 
based either on the momentum thickness o r  distance, 

The assumption has been made that there i s  some reference point in 
the compressible boundary layer where the temperature and density 
a r e  such that 

where 

and the values of p ' and p' a r e  evaluated at the reference temperature. 
Therefore, 

Cf - , I ' ,  C f '  
( I '  C f l  = :.__ -- --.- - - 

2 R e  2 1 .  ' 2 
(19) 

since the pressure  is assumed to be constant through the boundary 
layer.  

It may be shown, however, that 

T 3 F(Ro8) + +T G ( R x Y )  
T ' 



by using the power-law equations for  skin-friction coefficient 

and 

where 

can be derived f rom the incompressible relationships. In the absence of 
p ressu re  gradient, Eq. (1) can be written a s  

then 

and, af ter  integrating, 

On the other hand, i f  



then 

and, af ter  integrating, 

It is obvious that Eq. (26) is not equal to Eq. (29), and therefore 
Eq. (24) and Eq. (27) cannot both be correct .  Experimental correlation 
must  be made to determine which equation gives the better resu l t s .  

The determination of the proper  value of reference tempera ture  to 
be used must a l so  depend upon experimental correlation. Eckert  
(Ref. 7) suggests the relation 

'I" = 0.5 Tw + 0.22 Taw + 0.28 Te 

which, if  the recovery factor  is equal to 0. 896, becomes 

Sommer and Short (Ref. 5) suggest the relation 

which, again i f  the recovery factor is equal to  0. 896, becomes 

Eckert ' s  relation shows slightly grea ter  effects of both heat t ransfer  
and Mach number than does that of Sommer and Short and appears  to 
give slightly bet ter  correlation with the meager  amount of data which 
exis ts  a t  hypersonic Mach numbers. In order  to  take into account the 
effects of variable specific heat, Eckert  suggests the use of a reference 
enthalpy 

fo r  evaluating the physical properties of the gas. Although the 
derivations described herein a r e  developed f o r  constant specific heat, 
this modification can be easily substituted throughout. 



The correlation of theoretical resul ts  with experimental data can 
be made by comparing the ratios of compressible skin-friction 
coefficients to the incompressible value at  the same free-stream 
Reynolds number. Most of the experimental data have been obtained 
in wind tunnels. In the supersonic range up to a Mach number of about 
5, stagnation temperatures a r e  of the order  of 100" F or  560" R while 
the static temperatures decrease with increasing Mach number until a 
value of about 100" R is reached. At higher Mach numbers, the 
stagnation temperature is increased to maintain the static temperature 
at  about 100°R in order  to avoid liquefaction of the constituents of the 
air. The temperature variation which is suggested for correlating 
wind tunnel resul ts  is shown in Fig. 1 along with Ecker t l s  reference 
temperature for  the adiabatic wall condition. The temperature range 
is s o  great that a simple power law for  the variation of viscosity with 
temperature is not valid, and Sutherland's law must be used above 
198. 7" R. Below this temperature,  there is some meager evidence 
that the viscosity varies  proportionally with the temperature (the curve 
is tangent to the Sutherland curve). Misleading resul ts  can be obtained 
i f  such factors a r e  not taken into account for  correlation over a wide 
range in Mach numbers. 

A correlation of C f / C f i  a s  a function of Mach number is shown in 
Fig. 2. The experimental data were taken from Refs. 10 through 17 
and a r e  for approximately adiabatic wall conditions. The values of Cr, 

used for  the rat ios  were obtained from the relation 

0 .088  ( log H x i  - 2.3686) 
C f .  = -- 

1 ( log I t X i  - 1 .5 ) '  

which is developed in Appendix B. The values of C f  were obtained 
from the relation 

r 0 .088  ( log R, '  - 2.3686) C r  = 2 
T ' ( log R , '  - 1.5)) 

where 

and R,, the free-stream Reynolds number, is the same  a s  R x i  for  this 
curve. The static and reference temperatures from Fig. 1 were used 
to obtain the ratio of C f . / C f ,  shown in Fig. 2. The good correlation 
shown indicates that Eq. (36) provides an adequate method of determining 
C r  for  use in Eq. (10). It should be  noted that Eq. (36) is of the general 
form of Eq. (27) which therefore represents  experimental resul ts  
better than Eq. (24) .  



Much of the experimental data is available in t e r m s  of I l o .  The 
corresponding value of R ,  can be found f rom Eq. (36) in the same  
manner in which Eq. (29) was obtained f rom Eq. (27). 

O.Ot-I clog 11,~'- 2.1686)  

( l o g  I{,' - 1 . ~ 1 ~  

After integration 

c 
- -  

8 
- 

'I'  0.044 r: - - - 119 = -e_ ~. . - .  
2 X 't x I '  ( log  I I  , ' - 1.sV 

Therefore 

R *  = 1' -- 
0.044 I{, ' 

P e  ( l og  R ,  ' - 1.5)  

F r o m  this equation, the determination of Iln i s  straightforward when I < , '  
i s  given; however, when R o  i s  given, R,' must be found by some 
iterative method such a s  Newton's. In a s imi lar  manner. 

Once R x '  and I l x l  a r e  found to satisfy Eqs. (40) and (41 ), C f  and C r i  can 

be found f rom Eqs. (36) and (35) for  R n  = 110~ and a new ra t io  of (:f ' C f ,  

can be determined. Such a rat io  is shown in Fig. 3 along with 
experimental data from Refs. 10, 11, 18, 19, and 20. Again, good 
correlation i s  shown, indicating that Eq. (36) is satisfactory for the 
determination of C f .  

DETERMINATION OF Hi  

As shown previously by Eq. (13), the transformed form factor can 
be expressed in t e rms  of the incompressible, adiabatic form factor and 
temperature rat ios .  It is fur ther  shown in Appendix B that I l i  i s  related 
to C f ,  by 

and i s ,  therefore, a function of the incompressible Reynolds number. 
Thus, there remains the problem of determining the relation between 
the compressible and incompressible Reynolds number. 

In the transformation of Eq. (3) into Eq. (8) by means of Eq. (6) 
and (7), no transformation of s was involved. However, Eq. (8) can be 
written a s  



where U, is the transformed velocity (Appendix A) and the transformation 
dx/dX must be defined. For  incompressible flow, the momentum 
equation can be written a s  

d o i  Oi d u e ;  - + -  e i  d  Cf 
( 2 + I l i )  + - -L = 2 

d x i  sec o U e i  d x i  r d x i  2 

with fluid properties po and po evaluated at  To. Comparison of these 
equations indicates that the transformed flow may be considered in- 
compressible if  

where Cf is obtained a s  a function of Reynolds number based on x and 
C f i  is obtained a s  a function of Rx = po Ue X  /po . 

The original Stewartson's transformation used the relation 

d X  
2 ( y -  1 )  = ( for y  = 1.4 

dr 

Culick and Hill (Ref. 21) using the stagnation temperature a s  a 
reference temperature obtained the relation 

-- 
K - 1  Y + l  +- 1  

2 0 ' - 1 )  N 4 - -  
d  X  N 

d  x  for y = 1.4 

Mager (Ref. 22) using a s t i l l  different approach obtained the relation 

d X  P e  T 2 ' ~ - 1 )  - = 
T ' 

dx Lo(<) = ( )  for y  = 1.4 

which reduces to Stewartson's transformation if  the viscosity is assumed 
proportional to the temperature.  

If Eqs. (35) and (36) a r e  substituted into Eq. (45), the resul t  i s ,  
since R x  = R x i  , 

, - --- 
{I, - (log R g  - 2.3686)  2 0 ' - 1 )  're (log I { , ' -  2 .3686)  p '  

---- d R X  = (%) -- - - d R x '  (49) 
p, U,  (log H X  - 1.5)' ' r '  ( i ~ g ~ . ' - i . s ) '  p ' ~ e  
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which, af ter  integrating, yields 

Since 

Eq. (50) reduces  to 

R x -. - - - - I L  R x  ' - - - 

(log R X  - 1.5)' p ( log R, '- 1.5) 

which r e l a t e s  the incompressible  Reynolds number t o  the re fe rence  
Reynolds number.  Eq. (51) cannot be solved direct ly  fo r  Ilm, but the 
use of Newton's approximation with R x  = ( / L : I ~ ~ ) I I ~ '  a s  the f i r s t  
approximation yields a s  a second approximation 

which is sufficiently accurate  t o  determine (:fi f r om Eq. (35). This 

value of C f ,  is then used in  Eq. (42) to  determine I l i ,  af te r  which l l t ,  can 

be found f r o m  Eq. (13) f o r  use  i n  integrating Eq. (10). 

APPI-ICATION TO AXISYMMETRIC TUNNELS 

In the application of Eq. (10) to calculate the boundary l aye r  growth 
of an  ax isymmetr ic  wind tunnel, the calculations a r e  usually begun a t  
the throat  where the Mach number is unity. Equation (10) can thus be 
wri t ten 

Y +  1 
T Z(Y-1) 

= 0- (*) 



In many cases ,  the momentum thickness a t  the throat 8* can be assumed 
t o  be equal t o  z e r o  without appreciably affecting the values calculated 
nea r  the end of the nozzle. 

The Reynolds number a t  the throat  must  be based upon a value of x 

which is other than ze ro  i n  o rde r  to  s t a r t  with a finite value of Cr.  A 
useful approximation for  this init ial  value of X *  can be obtained in  the  
manner  suggested by  Sibulkin in Ref. 23. The velocity gradient a t  the 
throat  is obtained in  t e r m s  of the rad ius  of curvature  a t  the throat:  

It i s  then assumed that the  velocity gradient is constant f rom ze ro  to  
the  throat s o  that 

Therefore ,  

The Reynolds number a t  each point along the nozzle is thus based upon 
a value of x equal to X* plus the distance f rom the throat  t o  the  point. 
In general ,  the distance s along the nozzle contour m a y  be  assumed to  
be  equal t o  the distance x along the axis  f o r  the purpose of determining 
the Reynolds number. 

The above approximation can a l so  be  used to  es t imate  the momentum 
thickness a t  the throat  with the additional assumption that the values 
of the re fe rence  tempera ture  and the re fe rence  Reynolds number  a r e  
constant and equal to  the values a t  the  throat. Equation (10) may then 
b e  writ ten 

Y + l  Y + l  + 1  
2 + H t r  d u e  /dM 

d u e  l d x  
dhl 

(57)  

Since 



and 

thus, after substitution and rearranging, 

or ,  when y = 1.4, 

0.0694(10g R,. '- 2.3686) To 
o* = 

d M 
(log uX. '- 1.5)~ T* '  (1 + 0 . 2 ~ ~ ) '  

The integration indicated in Eq. (61) can be performed analytically for  
values of 11 t, which a r e  odd multiples of 0. 5. F o r  intermediate values, 
the integration must be performed numerically. The resul ts  of such 
integrations a r e  shown in Fig. 4, 

F o r  conical nozzles in which radial flow can be assumed, the 
Mach number is constant over each spherical segment of a r e a  2n 1 / ( 1 +  cos o), 

Since the throat a r e a  is nr*',  

f rom which 



Then, s ince  dr/dx = tan o 

5 - 3 ) '  

1 + cos a - ~ ( 1  + ~ 1 )  4 ( y - 1 ) c 0 t  a d x  = L d F  2 y + l  d M 
(6 5) 

Substituting Eqs. (63) and (65) into Eq. (10) yields 

r* ( 1  + cos  o) cac + (66) 

As before,  if  the  re fe rence  tempera ture  and re fe rence  Reynolds number 
can be assumed to  be constant, 

and, if = 1.4, 

0.00637 (log H, ' - 2.3686) To r *  Cot 5 
+ 

(log R , '  - 1.5)' T '  
(68) 

The integration indicated in Eq. (68) can be  per formed analytically 
when Fltr i s  an  integer and numerically when Fit, is not an integer.  The 
r e su l t s  of such integrations a r e  shown in  Fig. 5 where the integration 
in  each case  is performed, for  convenience, over  the  interval  f r o m  
1 t o  h l .  Obviously, 



F o r  the general case of conical and contoured nozzles, the reference 
temperature and Reynolds number a r e  not constant, and f o r  the con- 
toured nozzle the radius is not an analytic function of the Mach number. 
Equation (53) must therefore be used downstream of the throat while 
Eq. (60) or  (61) can be used to estimate the value a t  the throat. In 
many cases,  the variation of R x  over the length of the nozzle is smal l  
enough that a constant average value of 1 J i  can be used and the computa- 
tions involved can thereby be simplified. 

Values of boundary-layer displacement thickness calculated by the 
method described a r e  compared with experimental values in Figs.  6 
and 7 for Mach 7 and 8 conical nozzles and in Fig. 8 for a Mach 8 
contoured nozzle. The experimental data were obtained in the 50-inch- 
diameter nozzles of the Gas Dynamics Facility. The agreement shown 
is considered to be extremely good. 

CONCLUDING REMARKS 

A method has been developed for calculating the growth of a 
turbulent boundary layer at  hypersonic Mach numbers. Excellent 
agreement with experimental resul ts  from axisymmetric nozzles has 
been obtained through the application of this method. The basis  for the 
calculations is Eq. (10) wherein the compressible skin-friction 
coefficient is obtained from Eq. (36), and the transformed form factor 
is given by Eq. (1 3) in which the incompressible form factor is related 
by Eq. (42) to the incompressible skin-friction coefficient evaluated at  
the incompressible Reynolds number given by Eq. (52). 



APPENDIX A 

STEWARTSON'S 'TRANSFORMATION 

In the Stewartson's  t ransformat ion,  as given i n  Ref. 9, the distance 
no rma l  to  the su r f ace  is t ransformed by the  re la t ion 

and the velocity para l le l  to the su r f ace  is t ransformed by the re la t ion 

U = "  a" (A-2) 

External  of the boundary l aye r  

s o  that 

The definition of boundary-layer momentum thickness is 

where  A is the value of y where  both velocity and t empera tu re  r e a c h  
the i r  f r e e - s t r e a m  values.  Substitution of Eqs. (A-1) and (A-4) into 
Eq. (A-5) yields 

The  t ransformed momentum thickness  is defined as 

s o  that  



Y+ 1 Y +  1 
Y - 1 Y )  20'-1) = etr (To)21~-I) 6 = e,, (1 + - 

2 

It m a y  be noted that Eq. (A-7) has  the form fo r  incompressible  flow, 
although the shape of the velocity profile is distorted by the t r a n s -  
format ion (see Ref. 24). 

In a s imi l a r  manner,  the boundary-layer displacement thickness is 
defined by the equation 

Since the p r e s s u r e  is assumed to  be constant through the boundary 
layer ,  Eq. (A-10) may  be writ ten a s  

The s ta t ic  t empera ture  distribution through the boundary l aye r  may be 
e x p r e s s e d b y  

(A- 1 2) 

where T, is the local  stagnatior, t empera ture  corresponding to  the local  
s ta t ic  t empera ture  'I'. Substituting Eqs. (A-1), (A-4), and (A-12) into 
Eq. (A-11) yields 

where,  by definition 

(A- 1 4) 

(A- 15) 



When T, is cons tan t  and  equa l  t o  To, Eq .  (A-15) h a s  t h e  f o r m  f o r  i n -  
c o m p r e s s i b l e  flow. 

Divis ion  of Eq. ( 8 - 1  4) b y  Eq.  (A-8) y i e lds  

(A- 16 )  

Equa t ions  ( 8 - 9 )  a n d  (A-17) w e r e  u s e d  t o  t r a n s f o r m  Eq.  ( 3 ) .  Equat ion  
(A-1 5 )  m a y  b e  w r i t t e n  as 

s o  t h a t  

H , ,  = -- 

w h e r e  

(A- 1 8 )  

(A-  20) 

In o r d e r  t o  eva lua te  Eq. (A-19),  u s e  is m a d e  of C r o c c o f s  q u a d r a t i c  
t e m p e r a t u r e  d i s t r ibu t ion ,  w r i t t e n  as i n  Ref.  8,  

(A- 21 ) 

which  a s s u m e s  t h a t  t h e  t h e r m a l  boundary  l a y e r  h a s  t h e  s a m e  t h i c k n e s s  
as the  ve loc i ty  b o u n d a r y  l a y e r .  T h i s  would o c c u r  only if t h e  P r a n d t l  
n u m b e r  i s  unity. However ,  Eq.  (A-21 ) p a r t i a l l y  a c c o u n t s  f o r  P r a n d t l  
n u m b e r s  o t h e r  t h a n  uni ty th rough  the  u s e  of the  ad iaba t i c  w a l l  t e m p e r a -  
t u r e  i n s t e a d  of t he  s t agna t ion  t e m p e r a t u r e .  Subs t i tu t ion  of Eq.  (A-  21 ) 
i n t o  Eq.  (A-1 1), a long  with E q s .  (A-1)  a n d  (A-4) y i e lds  



Division of Eq. (A-23) by (A-8) yields 

Equations (A-24) and (A-17) may be combined s o  that 

(A- 23) 

(A- 24) 

(A- 25) 

The variation of 11 according to Eq. (A-24) a s  a function of Mach 
number is compared in Fig. 9 with experimental resul ts  from Refs. 10 
and 25 and in Fig. 10 with the tabulated resul ts  from Ref. 26. The 
correlation is considered to be very good and justifies the derivation 
described. 
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APPENDIX B 

INCOMPRESSIBLE SKIN-FRICTION COEFFICIENTS 

A great many empirical equations have been developed for  the 
variation of the local and mean skin-friction coefficients with Reynolds 
number for incompressible flow. Probably the most simple to use a r e  
the power-law equations 

where 

F o r  a limited range of Reynolds numbers, values of a ,  P ,  and U can be 
considered to be constant; but, for  a la rge  range of Reynolds numbers, 
their values must  also be  functions of the Reynolds number. 

Locke (Ref. 27) investigated a number of the empirical equations 
and found that Schoenherr ' s  equation 

gave a good correlation with a very  la rge  amount of experimental data 
over the wide range of Reynolds numbers from l o 5  to  10 ' .  Other forms 
of this equation a r e  

-- - log ( 2  Ro,) 
\Ti 
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and 

C f i  = 
( 0.242 1' 

log ( 2  R O ,  ) [ log ( 2 R O ,  ) + 0.8686 I (B-7) 

Although Schoenherr ' s  equations co r r e l a t e  well with experimental  
resu l t s ,  they a r e  difficult to  use because neither Cr, o r  C F ,  can b e  found 

direct ly  a s  a function of R X i  . Tables can be constructed for  use when the 

computing is done manually; however, m o r e  direct  equations a r e  des i red  
fo r  use  with automatic computers.  Any se t  of equations mus t  sat isfy  the 
relationship 

After an investigation of s eve ra l  types of equations, the equations 

C F .  = 
0.088 

( log H x i  - 1.5)' 

and 

0.088 ( l o g  R , ,  - 2.3686)  
C f .  = 

( l o g  R x i  - 1.5)~ 

were found to cor re la te  with experimental  data a s  well a s  Schoenherr ' s  
equations over the range of Reynolds numbers  f rom 10' to l o 9 .  A 
comparison of values of C F ,  calculated f r o m  Eq. (B-10) with those f r o m  

Eq. (B-5) i s  shown in  Fig. 11 together with the "ideal" values f rom 
Ref. 28 and 29. A s imi l a r  comparison of values of Cr, is shown in 

Fig. 12  together with experimental  values of Dhawan (Ref. 30), Schultz- 
Grunow (Ref. 31), and Kempf (Ref. 32). These data a r e  recognized a s  
being among the mos t  accurately determined values available. A 
fur ther  comparison of R e i  a s  a function of R x i  is made in  Fig.  13 with 

the experimental  values of Wieghardt (Ref. 33). All of these com- 
par isons indicate the validity of Eqs. (B-10) and (B-11). 

A cr i t i ca l  examination of the curve of Eq. (B-10) shows that i t  
c r o s s e s  Schoenherr ' s  curve a t  a Reynolds number of about lo '  and again 
a t  about 5 x lo '  . Moreover, i t  goes to infinity when log R X i  = 1. 5 o r  

n x i  = 3 2. Fur thermore ,  the curve of Eq. (B-  11) has  ze ro  slope when 



log R x i  = 2. 3686 o r  R x i  = 234. Both of these conditions a r e  well below 

the range for  turbulent boundary layers  and are ,  therefore, of 
academic interest only. The values of the constants, 0. 088 and 1. 5, 
could have been chosen to agree better with Colesf values but the 
experimental values do not warrant such a selection. 

The incompressible form factor H i  is a lso  a function of Reynolds 
number and is shown in Ref. 29 to be related to the skin-friction 
coefficient in the manner, 

H i  = 
1 

1 - 7  4- (B- 12) 

where the constant 7 (although different from that of Ref. 29) is chosen 
for correlation with experimental data. Such correlations a r e  shown 
in Figs. 14 and 15. Again the correlations a r e  quite satisfactory. 

F o r  comparative purposes, values of C F i ,  Cr , ,  R e i  , and Fli a r e  

listed in Table 1 for  various values of Rxi  from 10' to 10'. Also 

listed a r e  the values of N obtained from Eq. (B-3) which show that the 
use of Eqs. (B-1) and (B-2) must be limited to small  ranges of 
Reynolds number. 
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TABLE 1 

INCOMPRESSIBLE SKIN FRICTION VALUES 
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MACH NUMBER 

Fig. 1 Temperature Variations Used for Correlating Wind funnel Results 
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Fig.  2 correlation of Calculated Ratios, C J C ~ , ,  with Experimental Values Based upon R. 
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Fig. 3 Correlation of Calculated Ratios, Cf/Cf, ,  with Experimental Values Based upon Ro 



Fig .  4 Values of Integral Used in Calcu4ating Boundary-Layer Thickness a t  the 

Throat of an Axisymmetric Nozz le  
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Fig. 6 Comparison of Calculated Boundary-Layer Thickness with Values Measured in a Mach 7, 
50-inch-Diameter Conical Nozzle 
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Fig.  9 Correlation of Calculated Values of H with Experimental Values 
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Fig. 10 Comparison of Values of H Calculated from Eq. (A-24) with Those 

from Ref. 26 for H i  = 11/9 
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Fig. 13 Comparison of Various Equations Relating R with R, 
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